PRINCIPLES OF ANALYSIS TOPIC V: CLUSTER POINTS AND SUBSEQUENCES

PAUL L. BAILEY

ABSTRACT. We define cluster points and subsequences, and prove two versions of the Bolzano-Weierstrass Theorem.

1. CLUSTER POINTS

Definition 1. Let $(a_n)_{n=1}^{\infty}$ be a sequence of real numbers and let $q \in \mathbb{R}$. We say that $(a_n)_{n=1}^{\infty}$ clusters at q if

 $\forall \epsilon > 0 \; \forall N \in \mathbb{N} \; \exists n \ge N \; \ni \; |s_n - C| < \epsilon.$

In this case, we call q a *cluster point* of $(a_n)_{n=1}^{\infty}$.

Proposition 1. Let (a_n) be a sequence in \mathbb{R} which converges to $p \in \mathbb{R}$. Then p is a cluster point of (a_n) .

Proof. Let $\epsilon > 0$ and $N \in \mathbb{N}$; we wish to show that there exists $n \geq N$ such that $|a_n - p| < \epsilon$. Since (a_n) converges to p, there exists $N_0 \in \mathbb{N}$ such that $n \ge N_0$ implies $|a_n - p| < \epsilon$. Let $n = \max\{N, N_0\}$; then $n \ge N$ and $|a_n - p| < \epsilon$.

Proposition 2. Let (a_n) be a bounded sequence of real numbers. Then

- (a) $\limsup a_n$ is a cluster point of (a_n) ;
- (b) $\liminf a_n$ is a cluster point of (a_n) .

Proof. Since (a_n) is bounded, $\limsup a_n$ and $\liminf a_n$ exist as real numbers. Let $u = \limsup a_n$; we wish to show that u is a cluster point of (a_n) .

Let $\epsilon > 0$ and let $N \in \mathbb{N}$; it suffices to show that there exists $m \ge N$ such that $|a_m - u| < \epsilon$. Let $u_M = \sup\{a_n \mid n \ge M\}$.

Since $u = \lim_{M \to \infty} u_M$, there exists $N_0 \in \mathbb{N}$ such that, for all $M \geq N_0$, we have $|u_M - u| < \epsilon$. Let $M = \max\{N, N_0\}$. Then $U - \epsilon < u_M < u + \epsilon$; since $u_M = \sup\{a_n \mid n \ge M\}$, there exists an element of $\{a_n \mid n \ge M\}$ between $U - \epsilon$ and u_M . Select $m \in \mathbb{N}$ with $m \ge M \ge N$ such that $u - \epsilon < a_m < u_M$. We have $u - \epsilon < a_m < u + \epsilon$, so $|a_m - u| < \epsilon$. Thus u is a cluster point of (a_n) .

That $\liminf a_n$ is a cluster point can be proved similarly.

Proposition 3. (Bolzano-Weierstrass Theorem Version I)

Every bounded sequence of real numbers has a cluster point.

Proof. The limit superior of a bounded sequence exists as a real number, and this real number is a cluster point by Proposition 2.

Date: November 22, 2005.

Proposition 4. Let (a_n) be a bounded sequence in \mathbb{R} , and let q be a cluster point of (a_n) . Then $\liminf a_n \leq q \leq \limsup a_n$.

Proof. Suppose that $q \in \mathbb{R}$, and assume that $q > u = \limsup a_n$. Now q - u is positive; let $\epsilon = \frac{q-u}{2}$. By definition of limit superior, there exists $N \in \mathbb{N}$ such that $n \ge N$ implies $|\sup\{a_n \mid n \ge N\} - u| < \epsilon$. Thus for every $n \ge N$, we have $\sup\{a_n \mid n \ge N\} < u + \epsilon$, so $a_n < u + \epsilon = q - \epsilon$, and $q - a_n > \epsilon$.

This shows that q is not a cluster point; thus any cluster point must be less than or equal to $\limsup a_n$. Similarly, any cluster point must be greater than or equal to $\liminf a_n$.

Proposition 5. Let (a_n) be a sequence in \mathbb{R} . Then (a_n) converges to p if and only if p is the only cluster point of (a_n) .

Proof. We prove the double implication in each direction, using the fact that (a_n) converges (to p) if and only if $\liminf a_n = \limsup a_n$ (which equals p), as we have previously shown.

 (\Rightarrow) Suppose that (a_n) converges to p. By Proposition 1, p is a cluster point of (a_n) , and we wish to show it is the only cluster point. Let q be a cluster point; we wish to show that q = p.

By Proposition 4, we have $\liminf a_n \leq q \leq \limsup a_n$. Because (a_n) converges to p, we know that $\liminf a_n = \limsup a_n = p$. Thus q = p.

(\Leftarrow) Suppose that p is the only cluster point of (a_n) . Then $\liminf a_n = p = \limsup a_n$. This shows that (a_n) converges to p.

2. Subsequences

Let $a : \mathbb{N} \to \mathbb{R}$ be a sequence of real numbers. A *subsequence* of a is the composition $a \circ n$ of a with a strictly increasing sequence $n : \mathbb{N} \to \mathbb{N}$ of positive integers.

If we denote the sequence a by $(a_n)_{n=1}^{\infty}$ and the sequence n by $(n_k)_{k=1}^{\infty}$, then we denote the subsequence by $(a_{n_k})_{k=1}^{\infty}$.

Proposition 6. Let $n : \mathbb{N} \to \mathbb{N}$ such that $n \mapsto n_k$ be an increasing sequence. Then $n_k \ge k$.

Proof. By induction on k.

For k = 1, we have $n_k = n_1 \ge 1$, since $n_k \in \mathbb{N}$.

Assume that $n_k \ge k$; then $n_k + 1 \ge k + 1$. Since *n* is increasing, $n_{k+1} > n_k$, so $n_{k+1} \ge n_k + 1$. Thus $n_{k+1} \ge n_k + 1 \ge k + 1$.

Proposition 7. Let (a_n) be a sequence of real numbers and let $p \in \mathbb{R}$. Then (a_n) converges to p if and only if every subsequence of (a_n) converges to p.

Proof. We prove both directions.

 (\Leftarrow) Note that a sequence is a subsequence of itself. Thus if every subsequence of (a_n) converges to p, then in particular the sequence itself converges to p.

(⇒) Suppose that $\lim a_n = p$. Let (a_{n_k}) be a subsequence of (a_n) , and let $\epsilon > 0$. Then there exists $N \in \mathbb{N}$ such that if $n \ge N$, then $|a_n - p| < \epsilon$. Thus for $k \ge N$, we have $n_k \ge K \ge N$, so $|a_{n_k} - p| < \epsilon$. **Proposition 8.** Let (a_n) be a sequence of real numbers. Then (a_n) has a monotonic subsequence.

Proof. This proof follows Ross, which in turn follows D. J. Newman's A Problem Seminar.

Let's say that the i^{th} term of (a_n) is *dominant* if $a_j < a_i$ for every j > i.

Case 1: There are infinitely many dominant terms. In this case, set

 $n_1 = \min\{n \in \mathbb{N} \mid a_n \text{ is dominant}\}.$

Then recursively set

 $n_{k+1} = \min\{n \in \mathbb{N} \mid a_n \text{ is dominant and } n > n_k\};$

this set is nonempty by the hypothesis of this case. Then (a_{n_k}) is a decreasing sequence.

Case 2: There are finitely many dominant terms. In this case, set

 $n_0 = \max\{n \in \mathbb{N} \mid a_n \text{ is dominant}\}.$

Then recursively set

$$n_{k+1} = \min\{n \in \mathbb{N} \mid a_n > a_{n_k} \text{ and } n > n_k\};$$

this set is nonempty because a_{n_0} was the last dominant term. Now (a_{n_k}) is an increasing sequence.

Proposition 9. (Bolzano-Weierstrass Theorem Version II)

Every bounded sequence of real numbers has a convergent subsequence.

Proof. It is clear that if a sequence is bounded, then every subsequence is also bounded. Thus a bounded sequence has a bounded monotonic subsequence, which must converge. $\hfill \square$

3. Subsequential Limits

Definition 2. We say that q is a subsequential limit of (a_n) if there exists a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty} a_{n_k} = q$.

Proposition 10. Let (a_n) be a sequence of real numbers, and let $q \in \mathbb{R}$. Then q is a cluster point of (a_n) if and only if q is a subsequential limit of (a_n) .

Proof. Suppose that q is a cluster point. Then for every $N \in \mathbb{N}$ there exists $n \ge N$ such that $|a_n - q| < \frac{1}{N}$.

 Set

$$n_1 = \min\{n \in \mathbb{N} \mid |a_n - q| < 1\},\$$

and inductively set

$$n_{k+1} = \min\{n \in \mathbb{N} \mid |a_n - q| < \frac{1}{n} \text{ and } n > n_k\}.$$

That these sets are nonempty is assured by the fact that (a_n) clusters at q. Then (a_{n_k}) is a subsequence of (a_n) which converges to q.

Suppose that (a_{n_k}) is a subsequence which converges to q. Let $\epsilon > 0$ and let $N \in \mathbb{N}$. Let K be so large that $k \ge K \Rightarrow |a_{n_k} - q| < \epsilon$. Let $n = \max\{N, K\}$. Then $n \ge N$, so $n_k \ge N$. Moreover, $n \ge K$, so $n_k \ge K$ and $|a_{n_k} - q| < \epsilon$. \Box

Remark 1. We have previously seen that every bounded sequence has a cluster point, and we have just seen that every cluster point is the limit of a subsequence. This produces an alternate proof of the Bolzano-Weierstrass Theorem Version II.

Proposition 11. Let (a_n) be a bounded sequence in \mathbb{R} .

Then there exist monotonic subsequences of (a_n) which converge to $\limsup a_n$ and $\liminf a_n$.

Proof. We have seen that $\limsup a_n$ and $\liminf a_n$ are cluster points, and that cluster points are subsequential limits. Since every sequence has a monotonic subsequence, the result follows.

4. Problems

Problem 1. Construct a divergent sequence (a_n) of real numbers such that (a_{mk}) converges for every $m \in \mathbb{N}, m \geq 2$.

Solution. We use the fact that there are infinitely prime numbers.

Define

$$a_n = \begin{cases} 1 & \text{if } n \text{ is prime ;} \\ 0 & \text{otherwise .} \end{cases}$$

Since there are infinitely many primes, $\limsup a_n = 1$. Since there are infinitely many nonprimes, $\liminf a_n = 0$. Thus (a_n) does not converge.

However, for any $m \in \mathbb{N}$ with $m \geq 2$, mk is not prime for $k \geq 2$, so $a_{mk} = 0$ for all $k \geq 2$. Thus $\lim_{k\to\infty} a_{mk} = 0$, and (a_{mk}) converges.

Problem 2. Let (a_n) and (b_n) be bounded sequences of positive real numbers, and suppose that $0 \in \mathbb{R}$ is a cluster point of the sequence $(a_n b_n)$. Show that 0 is a cluster point of either (a_n) or of (b_n) .

Problem 3. Let (a_n) and (b_n) be bounded sequences of positive real numbers, and suppose that $c \in \mathbb{R}$ is a cluster point of the sequence $(a_n + b_n)$. Show that there exist cluster points a of (a_n) and b of (b_n) such that c = a + b.

Problem 4. Let (a_n) and (b_n) be bounded sequences of positive real numbers, and suppose that $c \in \mathbb{R}$ is a cluster point of the sequence $(a_n b_n)$. Show that there exist cluster points a of (a_n) and b of (b_n) such that c = ab.

Problem 5. Construct sequences (a_n) and (b_n) such that a is a cluster point of (a_n) and b is a cluster point of (b_n) , but a + b is not a cluster point of $(a_n + b_n)$.

Problem 6. Construct sequences (a_n) and (b_n) such that a is a cluster point of (a_n) and b is a cluster point of (b_n) , but ab is not a cluster point of (a_nb_n) .

Problem 7. Let (a_n) and (b_n) be bounded sequences of positive real numbers, and suppose that (a_nb_n) has a subsequence which converges to 0. Show that either (a_n) or (b_n) has a subsequence that converges to 0.

Problem 8. Let (a_n) and (b_n) be bounded sequences of positive real numbers, and suppose that $(a_n + b_n)$ has a subsequence which converges to $c \in \mathbb{R}$. Show that there exists a subsequence of (a_n) which converges to $a \in \mathbb{R}$ and a subsequence of (b_n) which converges to $b \in \mathbb{R}$ such that c = a + b.

Problem 9. Let (a_n) and (b_n) be bounded sequences of positive real numbers, and suppose that (a_nb_n) has a subsequence which converges to $c \in \mathbb{R}$. Show that there exists a subsequence of (a_n) which converges to $a \in \mathbb{R}$ and a subsequence of (b_n) which converges to $b \in \mathbb{R}$ such that c = ab.

Department of Mathematics and CSci, Southern Arkansas University $E\text{-}mail\ address:\ plbailey@saumag.edu$